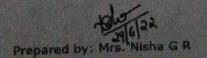
Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi


EC 29/06/22 Rev 1.10 CRM08

CONTINUOUS INTERNAL EVALUATION- 1

S Code:18EC42 Sub: Analog Circuits Sem / Div: IV Dept:EC Elective:N Max Marks: 50 Time: 3:00-4:30 pm Date: 04/07/2022

Note: Answer any 2 full questions, choosing one full question from each part.

Questions	Marks	KBI	Cos
PART A			
a Explain the design constraints of a classical discrete-circuit biasing arrangement with circuit and relevant equations. How does RE provide a negative feedback action to stabilize the bias current?	9	L2	CO1
b Explain the three basic configurations of MOSFET	6	L2	CO1
c Design the classical discrete circuit bias network to establish a current IE = 1 mA using a power supply VCC = +12 V. The transistor is specified to have a nominal β value of 100. calculate the expected range of IE if the transistor used has β in the range of 50 to 150. Express the range of IE as a percentage of the nominal value (IE =1 mA) obtained for β = 100. do it for both the designs i.e, design 1: considering voltage devider current as 0.1IE. For	10	L3	COI
design 2: considering voltage devider current as IE		66000	
2 a With a neat circuit diagram and ac equivalent circuit derive the expressions for Rin, Avo, Av and Ro for common source amplifier	10	L2	COI
b Considering the conceptual circuit of common emitter configuration, derive the expressions for gm, rΠ, and re. Draw the hybrid –Π model of a transistor.	9	L2	COI
c Derive the Voltage gain with respect to small signal operation of BJT Also obtain the relation between emitter and base resistance.	6	L3	C01
PART B		1	1 501
a A CS amplifier utilizes a MOSFET biased at ID=0.25mA with VOV=0.25V and RD=20kΩ. The device has VA=50V. The amplifier is fed with a source having Rsig=100kΩ, and a 20-kΩ load is connected to the output. Find Rin, Avo, Av and Ro and GV. If to maintain reasonable linearity, the peak of the input sine-wave signal is limited to 10% of $(2V_{OV})$ what is the peak of the sinewave voltage at the output?		L3	CO1
b With a neat circuit diagram and ac equivalent circuit derive the expressions for Rin, Avo, Av and Ro for common source amplifier with source resistance.	e 10	L2	COI
c Compare BJT with MOSFET	5	L2	COI
OR			
4 a In the circuit shown, find the overall voltage gain Av=vo/vi. Assum β =100. Draw the dc equivalent circuit. Also write the small signal equivalent circuit using hybrid- π model	e 10 l	L3	COI

a halt HOD

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

29/06/22

CONTINUOUS INTERNAL EVALUATION- 1

Vcc=+10V R _c =3K -0V _o B=100 V _B 3V			
b A BJT having β=100 is biased at a DC collector current of 1mA. Find	6	L3	CO1
the value of gm, re and r Π at the bias point c A BJT CE amplifier is biased to operate at a constant collector current, VBE is adjusted to yield a dc collector current of 1 mA. Let $VCC = 15 \text{ V}$, $RC = 12 \text{ k}\Omega$, and $\beta = 80$. Find the voltage gain Vce/Vbe. If vbe = $0.002 \sin \omega$ t volt, find vC(t) and iB(t).		L3	CO1

Prepared by: Mrs. Nisha G R

hart HOD